CHEMISTRY - Entrance examination sample test

1	The density of aluminium is $2.70 \mathrm{~g} / \mathrm{cm}^{3}$. Express this value in units $\mathbf{k g} / \mathrm{m}^{3}$. A) $0.27 \mathrm{~kg} / \mathrm{m}^{3}$ B) $2.7 \mathrm{~kg} / \mathrm{m}^{3}$ C) $27 \mathrm{~kg} / \mathrm{m}^{3}$ D) $2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$	
2	Find the correct statement: A) Proton and neutron have the same charge. B) Electron and proton have the same mass. C) Proton and neutron have the same mass. D) Electron and neutron have opposite charges.	
3	Identify the weak base: A) $1 \% \mathrm{NaOH}$ B) $0.1 \mathrm{~mol} / \mathrm{KOH}$ C) $1 \% \mathrm{NH}_{3}$ D) $2 \% \mathrm{Ca}(\mathrm{OH})_{2}$	
4	Assign oxidation states to all atoms in KMnO_{4} : A) $\mathrm{K}:+3 ; \mathrm{Mn}+5$; $\mathrm{O}:-2$ B) $\mathrm{K}:-1$; $\mathrm{Mn}-7$; $\mathrm{O}:+2$ C) $\mathrm{K}:+4 ; \mathrm{Mn}+4 ; \mathrm{O}:-2$ D) $\mathrm{K}:+1$; $\mathrm{Mn}+7$; $\mathrm{O}:-2$	
5	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}$ is formula of: A) palmitic acid B) stearic acid C) arachidonic acid D) oleic acid.	
6	Which one of the following pairs is not properly matched: A) maltose - disaccharide B) sucrose - monosaccharide C) fructose - monosaccharide D) glycogen - polysaccharide	
7	Write balanced equation for the following process: hydrogen sulfide burns in air to produce sulfur dioxide and water:	
8	Chloroform is a liquid that was used as a surgical anesthetic. If the density of chlorophorm is $\mathbf{1 . 4 9}$ g / ml, what is the volume of $\mathbf{2 5} \mathrm{g}$ of chloroform? A) 16.5 ml B) 37.25 ml C) 17 ml D) 37 ml	
9	What is the chemical formula for the compound sodium iodate? A) NaI B) NaIO_{3} C) Na_{2} D) NaIO	
10	How many atoms of hydrogen are in 1 mole of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$? A) 1.2×10^{25} atoms of hydrogen B) 1.20×10^{24} atoms of hydrogen C) 1.2×10^{26} atoms of hydrogen D) 1.2×10^{23} atoms of hydrogen	
11	What is the molarity of a solution containing 72 grams of HCl in enough water to make 500 mL of solution? A) 8 B) 4.8 C) 2.4 D) 4	
12	The ionic compound containing Fe^{3+} and $\mathrm{SO}_{4}{ }^{2-}$ would have the formula: A) FeSO_{4} B) $\mathrm{Fe}_{2} \mathrm{SO}_{4}$ C) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ D) $\mathrm{Fe}_{3}\left(\mathrm{SO}_{4}\right)_{2}$	
13	Balance the following equation: $\ldots \mathrm{KOH}+\ldots \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow _\mathrm{K}_{3} \mathrm{PO}_{4}+\ldots \mathrm{H}_{2} \mathrm{O}$	
14	Which is the correct name of a compound with formula $\mathrm{H}_{3} \mathrm{PO}_{4}$: A) Phosphorous acid B) Phosphor (III) acid C) Phosphoric acid D) Sulphurous acid	
15	Optically active molecules which rotate plane-polarized light in a counterclockwise direction are said to be: A) levorotary B) of R configuration C) dextrorotary D) of S configuration	
16	What is the name of the following compound? A) pyridine B) pyrimidin C) pyrrole D) piperdine	

17	Name the following compounds: A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{3}$
18	Calculate the pH of $0.1 \mathrm{~mol} / \mathrm{l} \mathrm{HCl}$
19	Give the name of the following compound: $\mathrm{CH}_{3}-\mathrm{CHNH}_{2}-\mathrm{COOH}$
20	Give the structural formula for methyl propyl ether:

In calculations, you may use these approximations of basic constants (select those you need):

Atomic mass unit	$1.66 \times 10^{-27} \mathrm{~kg}$
Avogadro constant	6×10^{23}
Elementary charge	$1.6 \times 10^{-19} \mathrm{C}$
Faraday constant	$9.65 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Gas constant	$8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Mass of electron	$9.1 \times 10^{-31} \mathrm{~kg}^{2}$
Molar volume of gases	22.4 I

Solutions

1	D
2	C
3	C
4	D
5	D
6	B
7	$2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$
8	C
9	B
10	B
11	D
12	C
13	$3 \mathrm{KOH}+\ldots \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow-\mathrm{K}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
14	C
15	A
16	C
17	aminopropane, propylamine; diethylamine
18	1
19	alanine, aminopropanoic acid
20	$\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

